
 

Zenith Lightpaper, V0.2 
Preamble 
Below is an outline of Zenith, a global consensus layer that provides Urbit with an economic 
substrate that we believe will accelerate the adoption of Urbit as the de-facto, full stack 
decentralized operating system and marshall it to wide scale adoption. 
 
We frame our views on the architecture of Zenith, the design of a fungible Urbit token ($Z), a 
roadmap that includes an incentivized testnet meant to allow for experimentation with extant 
Urbit applications (namely, Tlon Messenger), a launch mechanism called a lockdrop meant to 
distribute economic interest to current Urbit network participants, and the product possibilities 
that this approach unlocks. 

Abstract 
Zenith integrates natively with the Urbit network by designating Urbit's infrastructure nodes — 
Galaxies and Stars — as blockchain validators through a hybrid Proof of Authority/Proof of 
Stake mechanism. This architecture, combined with enshrined proposer-builder separation, 
ensures decentralized consensus while regularizing MEV extraction. Zenith allocates 
nonfungible blockspace to Stars, creating both a predictable fee market and a decentralized 
marketplace for blockchain services. The system's native currency $Z enables direct economic 
activity within the Urbit network, while its decentralized global state provides the foundation for 
social coordination. Through the novel Scry Oracle system, Zenith leverages Urbit's 
peer-to-peer computing infrastructure to create a mechanism for managing global state built on 
top of Urbit’s static functional namespace. This enables Urbit applications to implement features 
requiring shared state—from reputation systems to asset to collaborative tools—without 
complex external dependencies. By storing only cryptographic commitments on-chain while 
delegating computation and data storage to the network edge (Urbit), Zenith achieves 
sub-second transaction finality with the potential to process millions of state updates per minute. 
This architecture combines the security guarantees of blockchain consensus with the 
performance characteristics of traditional distributed systems, enabling real-world applications 
that would be impractical on conventional smart contract platforms. 

Introduction 
 

What is Urbit and why Zenith? 
 
Urbit is a from scratch reimagining of networked personal computing, designed to give users 
complete ownership over their digital lives through self-sovereign identity, data, and compute.  It 
aims to create a paradigm where users control all of their data and applications and interact 

1 

https://apps.apple.com/us/app/tlon-tlon-messenger/id6451392109


 

without a reliance on trusted third parties.To fully realize this vision, Urbit must solve two 
fundamental challenges inherent to decentralized computing that were out of scope at the time 
of its creation: establishing shared truth and enabling sovereign value capture by network 
participants through a mechanism native to the Urbit network. 
 
Zenith introduces three capabilities that transform Urbit from a network of sovereign computers 
into a complete platform for decentralized social computing: 
 
First, it implements a hybrid Proof of Authority/Proof of Stake consensus mechanism that 
leverages Urbit's existing infrastructure nodes, creating a naturally decentralized blockchain that 
can be secured by the network's existing Galaxy operators. This system incorporates enshrined 
Proposer-Builder Separation (ePBS) by giving Urbit Stars guaranteed access to blockspace, 
enabling them to provide specialized blockchain services and be remunerated in a currency 
native to the network while maintaining decentralization. 
 
Second, it implements the Scry Oracle system, a novel mechanism for managing global state 
built on Urbit's static functional namespace. The Scry Oracle adds Byzantine Fault Tolerance to 
Urbit's existing “scry1” namespace, making any scry binding immutable, canonical, and 
discoverable. This enables applications to implement features requiring shared state—from 
reputation systems to asset ownership to collaborative tools—without complex external 
dependencies. 
 
Finally, it introduces $Z, a native fee token that serves as a foundation for economic activity 
within the Urbit network. Beyond simple payments, $Z provides primitives that enable a rich set 
of economic interactions, many of which have been experimented with in extant blockchain 
systems, and many of which are wholly unique and only possible because of a tightly integrated 
system, ie reputation systems, digital asset ownership, “light” contracts, and service provision, 
tightly integrated into a first of its kind sovereign computing platform. 

Background 
Urbit began in 2002 as an independent research project derived from three key insights about 
the failures of networked computing: that Unix-based personal computing had become 
impersonal, with users owning none of their networked data; that the Internet's architects never 
anticipated the need for sovereign user-owned digital identity mapped to personal compute and 
storage; and that the client-server model fundamentally limited software extensibility and 
interoperability. The creators of Urbit foresaw a future where the user of networked services 
would be ruled over by whoever ran the server. 
 
This motivated the development of Urbit’s two core technologies: Azimuth, a Public Key 
Infrastructure (PKI) of 2^32 (~4.3 billion) network addresses that serve as user identities, and 
Arvo, a deterministic operating system designed for personal ownership of software and data 
over a P2P network. These components serve as the foundation for a world where any user can 

1 A scry path is basically just a file path pointing to some internal data on an Urbit ship 

2 



 

run their own server, which is the necessary precondition for a sovereign social operating 
system.  

Early Development 
When Urbit was first conceived, blockchain technology did not exist to solve problems of 
decentralized consensus and economic coordination. Even by 2015, when Ethereum launched, 
the capabilities of programmable blockchains were not yet well understood. As a result, Urbit 
succeeded in creating a system for personal sovereignty over compute and storage but lacked 
mechanisms for establishing shared truth across the network—a capability that would later 
become available through blockchain technology. 

The Current State of Urbit & Challenges 
Today, the Urbit network supports thousands of nodes and has demonstrated capacity to scale 
to hundreds of thousands. Since 2021, hundreds of developers have created applications on 
Arvo, and Tlon Corporation has leveraged it to build a production-grade cross-platform group 
messenger app that is available in major app stores.  

The Need for Consensus 
Urbit faces two significant technical limitations that blockchain technology is now capable of 
addressing: 

Lack of Global State 
The lack of protocol-level global state presents a fundamental challenge for application 
developers on Urbit. For example, a global social graph is necessarily part of a useful social 
application. The status quo requires a centralized third party to store the graph, but this is  both 
a liability to the individual “owner” of the graph itself and incurs exponentially increasing (n^2 
based on graph size) opportunity cost on the user insofar as they have effectively traded the 
asset to a third party in exchange for their usage of the product. External dependencies 
introduce their own challenges around censorship resistance, performance, reliability, and 
developer experience—and more importantly, they fragment the network's activity across 
multiple systems. A decentralized computing platform requires not just the ability to track how 
many nodes exist and who owns them2, but also to maintain a canonical record of how these 
nodes interact and connect with each other. 
 
External solutions also typically require complex integration work and new dependencies, 
creating additional barriers for developers and degrading user experience. This complexity is 
particularly acute in blockchain integrations, where impedance mismatches between smart 
contracts and application code often result in disjointed user experiences and slower 
development cycles. 

2 This is all that Urbit uses BFT consensus for at present. 

3 

https://join.tlon.io/0v7.hu04h.ovvh1.6f6b3.0cvpd.vjdh6
https://join.tlon.io/0v7.hu04h.ovvh1.6f6b3.0cvpd.vjdh6


 

Lack of Native Economic Primitives 
While Urbit's architecture enables users to own their data and run their own software, it requires 
native economic primitives to create sustainable incentives for network growth and 
development. New mechanisms are needed to enable direct value capture by users and service 
providers while maintaining the network's decentralization without creating external 
dependencies. 
 

In practice: Building a Decentralized OS with the 
Current State of the Art 
Looking at the challenges of building a decentralized operating system without Zenith and 
Urbit's integrated approach reveals why previous attempts have struggled. Doing so with extant 
technologies requires stitching together fundamentally misaligned technologies, creating a 
patchwork system with critical seams that compromise the entire architecture. To understand the 
depth of this challenge, we need to examine what happens at each layer of the required stack. 

Traditional approaches begin by attempting to decentralize computing through various 
disconnected solutions. Developers might leverage distributed compute networks like Golem, 
implement container orchestration across volunteer nodes, or create peer-to-peer virtual 
machines with limited guarantees. However, these approaches immediately encounter 
fundamental problems. Without a unified identity model across computational resources, the 
system suffers from unpredictable performance and availability. Security vulnerabilities emerge 
at system boundaries where different technologies meet, while high latency from coordination 
overhead makes real-time applications impractical. Most critically, the inability to guarantee 
deterministic execution across nodes means that different parts of the network may compute 
different results from the same inputs. 

Building an operating system layer on top of this fragmented compute foundation only multiplies 
the complexity. Developers must create custom protocols for resource management while 
integrating disparate storage solutions like IPFS, Filecoin, or Arweave. They need to implement 
peer-to-peer networking stacks such as Matrix, Secure Scuttlebutt, or libp2p, while also 
managing replicated state machines through consensus protocols like Raft or Paxos. This 
results in a fragmented user and developer experience where each component requires 
specialized knowledge of its unique API surface. The inconsistent security models across these 
components create additional vulnerabilities, while the high resource requirements for running 
full nodes limit participation and threaten decentralization. 

The challenge of maintaining consistent state across such a decentralized system introduces 
yet another layer of complexity. The system suffers from growing state bloat that threatens 
decentralization as more data accumulates on-chain. Inefficient synchronization mechanisms 
and inadequate conflict resolution strategies lead to slow convergence on shared state, making 
the system feel sluggish and unresponsive to users. 

4 



 

When financial capabilities need to be added to this already complex stack, they're typically 
bolted on through external systems rather than integrated naturally. Smart contract platforms 
like Ethereum or Solana provide the computational layer for financial logic, but require 
cross-chain bridges for interoperability with the rest of the system. External oracles become 
necessary to bring off-chain data into the financial layer, while Layer 2 scaling solutions attempt 
to address transaction throughput limitations. This creates incongruent programming models 
where developers must context-switch between the financial substrate and the operating system 
layer. Users face expensive and unpredictable transaction costs, while liquidity remains 
fractured across multiple chains. The complex key management required for interacting with 
multiple systems creates significant usability challenges, and the poor composability between 
financial and operating system features limits what applications can achieve. 

At the application layer, developers must accommodate all this underlying complexity, working 
across multiple development environments and languages while managing different deployment 
targets for operating system versus financial functionality. Custom state management patterns 
become necessary to bridge the gaps between layers, while hybrid authentication models 
attempt to unify the disparate identity systems. This extreme complexity raises barriers to entry 
so high that only the most determined developers can build meaningful applications. Users 
experience this as inconsistent interfaces across applications, poor discoverability of services, 
and limited composability between different tools. The difficulty of building network effects within 
such a fragmented ecosystem means that even well-designed applications struggle to achieve 
critical mass. 

The end result is a system where developers spend the majority of their time managing 
integration points between disparate technologies rather than building valuable functionality for 
users. Users, in turn, face a fragmented experience requiring them to manage multiple 
identities, wallets, and interfaces just to accomplish basic tasks. The overall system fails to 
deliver on the promise of a truly decentralized operating system with seamless financial 
capabilities, instead offering a complex assemblage of parts that never quite work together as 
intended. This is precisely the problem that Zenith solves by providing native consensus and 
financial primitives directly integrated into Urbit's unified computing environment. 

Tying It All Together: Zenith Protocol 
Zenith is a blockchain protocol that maps its consensus roles to Urbit's existing network 
hierarchy. It offers strong decentralization through Urbit's existing Galaxy distribution, which 
already has over 100 independent owners (no single entity controls more than 25% of total 
supply). The protocol provides built-in Sybil resistance through Urbit's identity system, 
enables predictable transaction costs through guaranteed blockspace allocation, and 
handles MEV (Maximal Extractable Value) elegantly by explicitly enshrining it within the 
existing hierarchy. It also integrates seamlessly with Urbit's infrastructure—any Urbit 
application can initiate blockchain transactions without external dependencies or additional key 
management. 
 

5 



 

The protocol's architecture centers on three key elements built around Urbit's existing node 
hierarchy. First, decentralized consensus is achieved through Galaxies—the root nodes of the 
Urbit network—which serve as validators. Second, blockspace is managed by Stars—Urbit's 
network relays—which act as service providers and block builders. Each Galaxy receives a fixed 
amount of blockspace for its sponsored Stars, enabling them to provide reliable blockchain 
services while discouraging any individual high-volume activity from monopolizing network 
resources. Third, the Scry Oracle system adds Byzantine Fault Tolerance to Urbit's "scry" 
namespace, creating a secure foundation for applications that need canonical, verifiable data. 
 
Building a blockchain designed to be used by the Urbit network unlocks these features with 
much less work than by building on existing chains, because of the ability to only build the 
necessary features and primitives required to bootstrap a Zenith enabled Urbit economy and not 
having to cater to constituencies outside the Urbit network. For example, the Urbit network can 
control its own fee market, rather than being subject to competition for blockspace against 
memecoins and other projects. Similarly, the Scry Oracle Contract when enshrined in the 
consensus layer can take advantage of its inherent scaling properties, reaching millions of 
bindings per minute without novel research (back of the envelope: one 50MB block could 
store 100,000 scry bindings, and the system could process one block every two seconds, 
meaning 3 million bindings per minute) – reaching comparable performance on existing 
chains would be exceedingly difficult if not impossible. 

Network Architecture 
In Zenith, each tier of the network serves a specific role: 
 
Galaxies (Urbit root nodes) serve as validators and block proposers. Stars (Urbit network relays) 
manage chain resources by serving as block builders and service providers. Planets (Urbit 
personal nodes) submit transactions to Stars. 
 
The network structure reflects the inherent scarcity and responsibilities of each tier: 
 

 Galaxy Star Planet 

Address Size (bits) 8 16 32 

Supply 256 65,280 4,294,901,760 

Sponsor None Galaxy Star 

Urbit role Governor Service provider End-user 

Zenith role Block Proposer Block builder Transaction submitter 

6 



 

Consensus Mechanism 
Galaxies serve as validators, responsible for proposing and validating blocks. This role builds on 
their existing position as the ultimate trust roots of the Urbit network, creating a hybrid Proof of 
Authority/Proof of Stake system where block confirmation rights are limited to Galaxies 
(Authority) who maintain a minimum stake requirement (Stake). Each validating Galaxy must 
maintain a minimum stake of $Z to participate in block production. All participating Galaxies 
meeting this stake requirement are assigned slots in a stake-weighted round-robin schedule for 
block production. 
 
The stake requirement serves primarily as a security deposit against misbehavior: failing to 
produce a block in an assigned slot results in slashing, which reduces both the Galaxy's stake 
and its likelihood of receiving future slots. Repeated failures have compounding 
consequences—if a Galaxy misses more than 5% of their assigned blocks, they are suspended 
from the validator set for some number of blocks. This strict performance requirement, 
combined with the loss of potential fee revenue from future blocks, creates strong incentives for 
reliable block production. 

Enshrined Proposer-Builder Separation (ePBS) 
Proposer-builder separation refers to the separation of block “proposing” from block “building”. 
“Enshrined” PBS enforces this separation at the protocol level. 
 
Zenith's ePBS mechanism ensures every Galaxy has an opportunity to include transactions 
from its own Stars, while also elegantly addressing MEV by explicitly enshrining it within the 
protocol: Stars capture local MEV from their planets, Galaxies capture local MEV from their 
stars, and global MEV rights rotate between block producers in a fair and predictable fashion. 
 
Stars, as "builders", build "bundles" of transactions, which they receive from Planets and send to 
Galaxies. Galaxies, as "proposers", create blocks out of groups of bundles. Those blocks are 
then subject to validation by other Galaxies. 
 
For a given block, a Galaxy is selected to be the leader through a pseudorandom process that 
selects it from the set of Galaxies who have announced their participation and have enough $Z 
staked. Every block has a maximum size limit, in bytes. The first and last transaction bundles of 
each block must come from the leader Galaxy's sponsored Stars in order for the other Galaxies 
to consider it valid. This gives each Galaxy guaranteed access to a certain amount of 
blockspace, which it can divvy up among its Stars as it sees fit. 
 
The leader Galaxy can decide which other transaction bundles it includes in between the first 
and last bundles. Galaxies may choose to share transaction bundles from stars among each 
other and include bundles from stars that are not bonded to them. 
 
Stars dictate the requirements for which transactions are included in blocks and they may 
charge planets in any denomination (ie $Z, USDC, etc) however they want. Galaxies price 

7 

https://ethresear.ch/t/why-enshrine-proposer-builder-separation-a-viable-path-to-epbs/15710


 

bundles in $Z, the consensus algorithm requires that galaxies pay their fees in $Z but galaxies 
are able to charge Stars however they want. 

Network Dynamics Under Contention 
When not under contention, transactions proposed by any Planet will go from their sponsoring 
Star to that Star's Galaxy, as part of a bundle from that Star, then the Galaxy will forward a 
collection of bundles to the leader forming that particular block. 
 
Under contention, the leader forming the block is going to bias its own Stars, and within that it 
will generally bias Stars who have paid the most, according to that Galaxy's own decision 
making. The leader Galaxy will also opportunistically accept bundles signed by other Galaxies, 
these bundles necessarily include transaction bundles from Stars that are not its own sponsees. 
There are no formal constraints on which bundles the leader galaxy is required to accept from 
other galaxies. The general idea is that a Galaxy will take whichever bundles make it the most 
money. Stars are guaranteed blockspace, since Galaxies have to include certain bundles from 
the Stars they sponsor, but Galaxies have no requirement to include any bundles from any other 
Galaxy or a Star they don’t sponsor. 

Network Participant Roles 

Stars 
Stars function as block builders, managing chain resources by accepting transactions from 
Planets and bundling them for Galaxies to propose for consensus. Stars must stake $Z to their 
sponsoring Galaxy to cement this relationship and gain access to guaranteed blockspace. To 
prevent switching between Galaxies casually or as part of attempts to game the system, this 
relationship is bonded on both sides. Both the Star and the Galaxy will be slashed if either side 
breaks the relationship, incentivizing stability. 
 
Each Galaxy receives a fixed allocation of blockspace that it can only distribute among its own 
Stars, enabling predictable transaction throughput. This predictability is crucial: rather than 
dealing with variable costs from competing in general blockspace auctions, Stars can reliably 
plan how to use their allocation. A Star might choose to: 
 

-​ Offer fixed-price transaction services to their Planets, knowing exactly how many 
transactions they can process 

-​ Subsidize certain types of transactions for their sponsored Planets as a way to attract 
users 

-​ Specialize in specific transaction types like PKI operations or Scry Oracle services 
-​ Operate Layer 2 environments with predictable base layer costs 

 
This guaranteed blockspace model particularly benefits service providers who need reliable 
transaction processing. For example, a Star operating a payroll service can make a deal with its 

8 



 

Galaxy to always have first rights to a part of the Galaxy's guaranteed blockspace, letting it 
calculate exact costs based on its known blockspace allocation, rather than dealing with 
unpredictable fee spikes from network congestion. This predictability allows Stars to develop 
sustainable business models and offer reliable services to their users. 
 
The role of block builder builds naturally on Stars' existing position as service providers in the 
Urbit network, where they already offer services like cloud storage, backup services, and 
network relays to their sponsored Planets. 

Planets 
Planets serve as end-user nodes and wallets, capable of signing and sending transactions 
directly over the Urbit network. This builds on their existing role as personal servers, requiring 
no additional configuration beyond acquiring funds to interact with Zenith. 
 
Planets are also a Sybil-resistant identity system. This means contracts that use Planet IDs can 
lean on the fact that creating new identities has some associated cost, which makes reputation 
easier to develop. 
 
Planets have four-syllable names like ~morzod-ballet or ~rovnys-ricfer, making them easy to 
remember. Planet names map to Zenith addresses, making human exeuction of peer to peer 
payments less frictionful on the network.  

Special Considerations 

Galaxy-Owned Stars 
In practice, each Galaxy will want to be running at least one sponsored Star for submitting its 
own transactions. This keeps the layering clean, so that only Stars ever sign transaction 
bundles. This is a part of the design of ePBS, where the proposing and building entities must be 
cryptographically distinct, but not necessarily owned by distinct entities. There would be no way 
to enforce any policy intending to prevent a Galaxy and Star from colluding, so a robust protocol 
needs to be designed to function properly in the case of collusion. 
 
As an example of a malicious version of collusion, if a Galaxy owner also owns a Star under that 
Galaxy, then that person could include only their own transaction bundles and censor the other 
sponsored Stars under that galaxy. If they do that, though, their other sponsored Stars will 
escape to other Galaxies, and this Galaxy owner will lose all the revenue from them. It is likely 
that those Stars had either expertise or order flow that the Galaxy will lose access to – because 
the Stars are specialized labor, it doesn't make sense for the Galaxy to compete with them. 

Azimuth Transactions 
In a world in which the Urbit PKI would move to Zenith, Zenith could prioritize Azimuth 
transactions, to ensure those never get priced out by other transactions. It could do this by 

9 



 

processing Azimuth transactions first – a Galaxy would take the block of transactions, separate 
it into Azimuth transactions and other transactions, process the Azimuth transactions first, then 
process other transactions. If an Azimuth transaction invalidates another transaction within the 
same block, the non-Azimuth transaction does not perform whatever state update it would have, 
but the submitter of that transaction must still pay the transaction fee. 
 
The chain could fix the price of Azimuth transactions. Separating out the Azimuth transactions 
and running them first prevents various games by creating an immutable PKI within any given 
block – this prevents things like someone trying to raise the price of something to prevent an 
address ownership transfer, or extracting more money from that. 

The Scry Oracle System 

Understanding Urbit's Scry Namespace 
The scry namespace is Urbit's native system for publishing and accessing data at a particular 
scry path, functioning like a global decentralized filesystem. When you want to retrieve data 
from another Urbit node, you use a scry path — similar to a URL, but starting with an Urbit ID 
instead of a domain name. Any node can request data from another node by sending a request 
over the Urbit network at a path that starts with that node's ID. 
 
When an Urbit node responds to a scry request, it signs the response with its private key3. This 
signature serves two purposes: it proves the response came from the correct node, and it 
represents a promise by that node to always return the same data for that path. The node that 
published the scry binding is generally responsible4 for serving the data at that path, although 
anyone is free to cache and republish the data. 

Adding Byzantine Fault Tolerance 
While nodes promise to return consistent data, the Urbit network currently cannot enforce this 
promise. A node could send different data to different requesters for the same path — a "double 
bind" problem analogous to the "double spend" problem that blockchains solve. Mathematically, 
this constitutes a Byzantine fault. 
 
A large amount of economic value can be unlocked by providing resiliency against Byzantine 
faults. In many applications in which multiple parties need to coordinate on a single canonical 
version of the truth – often the case when the authenticity and immutability of data has financial 
or legal implications – the cost of BFT consensus is justified. 
 
For example: 
 

4 But not required. We’ll discuss this more further below. 

3 Technically, this is the “networking key”, which is one of several keys in Urbit’s BIP-32 compliant HD 
wallet system – distinct from the key that owns the address, which should be kept in cold storage 

10 



 

Coordination Around Truth 
 

-​ Oracle services must ensure all participants see identical price data 
-​ Reputation systems require consistent display of ratings and reviews 
-​ Supply chain participants need agreement on tracking information 

 
Financial and Legal Implications 
 

-​ Financial institutions must maintain immutable audit trails 
-​ Healthcare providers need verifiable records that meet regulatory requirements 
-​ Different jurisdictions may require proof of data integrity and chronological ordering 
-​ Legal documents require verifiable timestamps and proof of authenticity 

 
Removing Intermediaries 
 

-​ Content creators need to prove ownership without central registries 
-​ Credential issuers must maintain consistent records without relying on third parties 
-​ Identity systems require decentralized verification of attestations 
-​ Reputation systems must function without centralized rating authorities 

 
The Scry Oracle adds Byzantine Fault Tolerance to the Urbit scry namespace, solving the 
double-bind problem described earlier. It maintains an on-chain registry of cryptographic hashes 
that correspond to data published at specific paths on Urbit nodes. When a node publishes 
data, the Oracle: 
 

1.​ Verifies the publisher owns the path 
2.​ Checks that the path hasn't already been bound 
3.​ Records the hash of the data 

 
The Scry Oracle is a registry that guarantees the canonical value for any path, i.e. the piece of 
data a node would send in response to a network request for that path. This binding between 
path and value must be signed, so that anyone could verify objectively that the node had indeed 
published the binding, not someone else. When hearing about a new binding, the registry also 
needs to abort the transaction if the path had already been bound. The registry only stores the 
hashes of the values at scry paths, not the values themselves, which can be arbitrarily large — 
its purpose is solely canonicalization, not data storage. Data storage is already handled by the 
Urbit network, off-chain. 
 
The Scry Oracle enables the above applications without requiring complex smart contracts. It 
provides a simple primitive — canonical data binding — that can be composed into 
sophisticated systems while maintaining Urbit's decentralized nature.  
 
On the surface, the SOC is a simple decentralized check-sum registry. Extending it with 
economic incentives to add guarantees around data availability at registered bindings would 

11 



 

enable use cases like decentralized app stores and file sharing networks. That is out of the 
scope of this paper, but we expect these to be built either internally or relatively quickly by 
independent teams. 
 
For more details, see the Developer Experience section below. 

Adding Discoverability to Scry Bindings 
Without the Scry Oracle, scry bindings are only discoverable insofar as the publisher makes the 
path known to other nodes. With the Scry Oracle, every binding is globally available in a single 
location, the Scry Oracle contract, making it possible for nodes to discover what data has been 
published.  
 
This allows applications to run global queries and aggregations on the full set of canonicalized 
scry bindings. Use cases include app stores, payment gated content, order books, 
leaderboards, reputation systems, and content curation. In essence, the Urbit network becomes 
a decentralized filesystem with on-chain listings and off-chain data storage. 

Developer Experience 
Zenith represents a fundamental shift in how developers can build blockchain-enabled 
applications. Rather than treating on-chain and off-chain components as separate systems that 
must be carefully integrated, Zenith allows developers to treat consensus state as a natural 
extension of their application's data model. 
 
As Urbit's native consensus system, Zenith will provide a highly ergonomic API to Urbit 
developers. This integration manifests in several ways: 
 

1.​ Native Data Access: The Urbit OS makes data from the scry namespace available 
axiomatically to applications – it can be accessed synchronously and without violating 
the referential transparency of Nock5 programs, just like data in the program's local 
variables. 

2.​ Simplified Consensus: Applications can request data canonicalization through simple 
one-line API calls, allowing Urbit application developers to focus on building features 
rather than managing blockchain interactions. 

3.​ Unified Identity: Zenith contracts can use the Urbit PKI natively, eliminating the need to 
manage separate on-chain and off-chain identity systems. 

 
This development environment enables rapid iteration and experimentation. Developers can 
build tightly integrated applications that combine on-chain and off-chain functionality without the 
traditional separation between smart contracts and "dApps."  

5 Nock is Urbit’s machine code – in this context, equivalent to EVM bytecode. 

12 

https://docs.urbit.org/language/nock/reference/definition


JavaScript

JavaScript

 

Example: Providing a Rating by Canonicalizing a Scry Binding 
Consider the use-case of rating posts in a blogging application. With Zenith and Urbit, no 
centralized server is required to store either the blog posts or ratings, since each user publishes 
their own posts, and each consumer publishes their own ratings. An application-specific smart 
contract is also not needed, because the Scry Oracle contract is expressive enough to encode 
all the required on-chain data. 
 
This example demonstrates how user  ~rovnys-ricfer would provide a rating on another 
user’s blog post — in this case ~ravmel-ropdyl. The final line is a one-line API call to 
canonicalize the binding, which makes ~rovnys-ricfer’s rating of the post globally 
discoverable, queryable, and uncensorable. 
 

var blogPostScryPath = "/~ravmel-ropdyl/blog/posts/3"; 
var ratingPath = "/~rovnys-ricfer/ratings" + blogPostScryPath; 
var ratingValue = 4; // 1 to 5 
 
canonicalizeScryBinding({ 
  path: ratingPath, 
  value: ratingValue,​
  onSuccess: function(signature) {}, 
  onFailure: function(error) {} 
}); 

 
Also note that this blog post could be paywalled or otherwise kept private, without needing to 
modify this scheme. The hash posted to the chain would be the hash of an encrypted version of 
the blog post, and only users who have been granted access (out of band) by the publishing 
ship would be able to decrypt the post and view it. To reiterate: the Scry Oracle only stores the 
path and the hash of the canonical value at that path — the data itself is provided by the node 
(or nodes) that publish the data, which are free to provide that data to requesters however they 
wish. 

Example: Aggregating Ratings by Querying the Scry Oracle 
Here is some pseudocode to calculate the average rating on that blog post, by aggregating all 
scry bindings in the scry oracle contract whose paths match the pattern indicating they 
represent ratings on that post: 
 

// Function to calculate average rating for a blog post 
async function getAverageRating(blogPostPath) { 

13 



 

  try { 
    // Query the scry oracle for all ratings on this post 
    const ratingBindings = await queryScryOracle({ 
      pattern: `/**/ratings${blogPostPath}` 
    }); 
     
    if (ratingBindings.length === 0) { 
      return 0; 
    } 
 
    // Calculate average from all rating values 
    const sum = ratingBindings.reduce((acc, binding) => acc + binding.value, 
0); 
    return Number((sum / ratingBindings.length).toFixed(2)); 
  } catch (error) { 
    throw new Error(`Failed to calculate average rating: ${error.message}`); 
  } 
} 
 
// Example usage: 
const blogPostPath = '/~ravmel-ropdyl/blog/posts/3'; 
 
getAverageRating(blogPostPath) 
  .then(average => console.log(`Average rating: ${average}`)) 
  .catch(error => console.error(error)); 

 
Note that in most blockchain systems, effectively aggregating on-chain data from inside an 
application typically requires contract-specific indexing infrastructure to be built and maintained. 
Making aggregations efficient will still require indexing, but this system has a few advantages: 
 

-​ Scry paths have meaningful names. Typical blockchains are queryable by hexadecimal 
addresses and transaction hashes, which isn’t useful unless you know what you’re 
looking for. Scry paths, by contrast, contain useful metadata about what they represent. 

-​ Creating indices of aggregate data at paths conforming to specific patterns is 
substantially simpler and more regular than doing so for Turing complete contracts. 

-​ Any Urbit node can create such an index itself as part of the process of running an 
application.  

14 



 

Implementation Strategy 

Initial Scope 
Zenith's initial implementation prioritizes simplicity and reliability by using proven technologies. 
The chain will launch with three core features: 
 

-​ Consensus and block production 
-​ A native token ($Z) 
-​ The Scry Oracle system 

 
Zenith will use CometBFT for consensus, running in a "sidecar" process alongside validators' 
Urbit nodes. CometBFT is a battle-tested consensus layer that secures billions of dollars in 
value. It continues to be used for blockchain implementation by leading projects such as 
Celestia ($2.5bn FDV), Injective ($1.3bn FDV), Cronos ($10bn FDV), Binance Chain ($96bn 
FDV), dYdX Chain ($530mm FDV) and Berachain ($1.3bn FDV).  
 
A modular blockchain architecture allows Zenith to replace components with Urbit-native 
solutions as they mature — for example, early experiments like %chain have demonstrated that 
Urbit-native consensus is possible; the Directed Messaging project will make Urbit’s network, 
%ames, capable of operating at the speeds required to replace CometBFT’s networking 
module; the Ares project will make Urbit nodes capable of storing the blockchain directly; a 
Nock VM in place of EVM for contract execution would require substantial development but is a 
tractable problem. 
 
Zenith will launch without smart contracts to allow the development team to focus on core 
capabilities while maintaining simplicity and security. The Scry Oracle system provides 
significant programmability without the complexity of general-purpose computation. This feature 
set has been chosen to minimize the time required to deliver important mainnet applications.  
 
It’s worth noting that the Scry Oracle enables smart contract execution through a novel 
approach: rather than implementing contracts directly in the base layer, it allows Stars to 
operate specialized execution environments that publish state roots through the Scry Oracle. 
See the EVM Compatibility section below for more details. 

Incentivized Testnet -> Mainnet Launch 
Zenith’s initial scope is intentionally constrained to achieve a balance between simplicity and 
expressivity. Our priorities are to: 
 

1.​ Bring a useful system online in a reasonably short time frame,  
2.​ Without sacrificing power and expressivity,  
3.​ While ensuring that our consensus and blockspace model is secure and functional. 

 

15 

https://github.com/cometbft/cometbft
https://docs.celestia.org/developers/integrate-celestia
https://docs.injective.network/learn/introduction/
https://docs.cronos-pos.org/
https://github.com/bnb-chain/bnc-cosmos-sdk
https://dydx.exchange/
https://github.com/berachain/.github/blob/main/profile/README.md
https://github.com/tiller-tolbus/chain
https://roadmap.urbit.org/project/directed-messaging
https://www.google.com/search?q=ares+urbit&sourceid=chrome&ie=UTF-8


 

We intend to launch Zenith’s testnet by late Q3 2025, which will include all features in the Initial 
Scope mentioned above. From a technical standpoint this timeline is viable because: 
 

●​ CometBFT gives us off-the-shelf consensus with demonstrated security 
●​ The Scry Oracle provides a dramatically lower surface area for programmability, 

eliminating substantial implementation complexity 
 
We will give the galaxies the ability to vote on other contracts that may get added to the chain 
(for instance, contracts related to financialization). At the outset these contracts will be EVM 
compatible. Over time, the galaxies can choose to move to a permissionless contract model.  
 
The Zenith testnet will be incentivized. Those Galaxies and Stars that participate will receive 
token allocations proportional to their participation when the mainnet launches. This sets 
participants up to receive token allocations that can be used to provide the requisite initial stake 
(see Galaxies and Stars for more detail) for operation on mainnet. For the network, ensuring 
maximum participation from infrastructure nodes as early as possible helps battle-test the 
consensus and blockspace model, and ensures that mainnet is sufficiently decentralized. 
 
The set of features present in the incentivized testnet is the same set that we’ll launch into 
mainnet with. After establishing sufficient confidence in the testnet, Zenith will launch mainnet — 
we anticipate that this will occur in Q1 2026. 

Future Work 
Later phases of development will introduce additional capabilities: 
 

1.​ Permissioned Nock Contracts: A limited smart contract environment using Urbit's 
native computation model. Any Nock state machine pre-approved by the Galaxies could 
be added as a Zenith contract, without requiring the addition of a gas model. (6 months 
of development time) 

2.​ Unpermissioned Nock Contracts: A gas model would be developed for Nock machine 
code, or for a custom bytecode derived from Nock, to allow anyone to deploy their own 
Nock contracts to Zenith. (12 months of development time) 

3.​ PKI Migration: Moving Urbit's PKI from Ethereum to Zenith. If there is consensus across 
the network, this could be done in stages, starting with so-called “Layer-2” Planets, then 
Layer-1 Planets, then Stars, then Galaxies.  

 
The path from CometBFT to a fully Urbit-native chain will be gradual. As Urbit's operating 
system matures, any component can be replaced by an Urbit-native equivalent: 
 

-​ Networking: Urbit's %ames network for validator communication 
-​ Storage: Urbit's filesystem for blockchain state 
-​ Consensus: Urbit-native BFT consensus 
-​ Execution: Nock-based smart contracts 

16 



 

 
This incremental approach allows us to launch with proven technology while maintaining a clear 
path to deeper integration with Urbit's infrastructure. 

Applications & Use Cases 

Cross-Domain Applications 
The shared data namespace created by the Scry Oracle enables applications that span 
traditional boundaries. A professional network could implement its own reputation metrics while 
maintaining compatibility with broader discovery systems. A content platform could develop 
specialized curation algorithms while allowing its content to be discoverable through other 
interfaces. 
 
More sophisticated applications become possible when combining multiple execution 
environments. For example: 
 

-​ A lending application for providing uncollateralized loans to creators could merge 
verifiable metrics of social capital (like sustained subscription counts and engagement 
patterns) with DeFi protocols to create more sophisticated credit scoring, enabling loans 
backed by proven audience relationships rather than traditional collateral 

-​ A DAO could use one Star's governance-focused EVM for voting while using another's 
DeFi-focused environment for treasury management 

-​ A game could combine one Star's matchmaking and ranking system with another's asset 
trading infrastructure 

Economic Relationships 
The combination of verifiable computation and cross-system reputation enables new types of 
economic relationships. Stars can compete to provide specialized services, with their reputation 
helping users make informed choices. Developers can create applications that compose 
services from multiple providers, relying on verified track records rather than centralized trust in 
deciding which developers or providers they choose. 
 
This creates a more efficient marketplace for blockchain services, where: 
 

-​ Users can choose providers based on verified performance in their specific use case 
-​ Stars can differentiate themselves through specialized expertise 
-​ Developers can build on reliable infrastructure without lock-in 
-​ Value flows directly to those providing useful services 

 
Rather than trying to build everything into the base layer, Zenith provides the minimal primitives 
needed to enable this ecosystem of specialized services. The Scry Oracle's role in making 

17 



 

computation verifiable, combined with the reputation system's ability to track reliability across 
different contexts, creates a foundation for continuous innovation at the services layer. 
 
Zenith's architecture enables many types of decentralized applications, one most of the more 
immediate addressable areas of impact comes from unbundling the traditional social computing 
stack. Today's platforms bundle three distinct functions: data storage, algorithmic processing, 
and user interface. This bundling creates monopolies where single companies control not just 
users' data, but how that data is filtered, processed, and presented. Zenith enables the 
separation of these components into their natural layers. 

Unbundling the Social Stack 
Zenith unbundles three core areas of functionality that have historically been controlled by 
single, centralized platforms: 
 
First, the data layer becomes public and canonical through the Scry Oracle system. Rather than 
being locked in proprietary databases, social data exists in a public, verifiable form that any 
service can build upon. Users maintain sovereignty over their data while benefiting from 
network-wide discoverability and interoperability. 
 
Second, the algorithm layer becomes competitive and community-controlled. Rather than one 
company determining what information reaches users, multiple providers can compete to offer 
the best processing and filtering of public data. Communities can develop or choose algorithms 
that align with their values and needs, from content recommendation systems to reputation 
scoring mechanisms. 
 
Third, the interface layer becomes truly customizable. Client applications can provide 
specialized user experiences without needing to control the underlying data or algorithms. This 
enables innovation in user interfaces and interactions while maintaining compatibility with the 
broader network. 

Tlon Messenger: Unbundling in Practice 
Tlon's Urbit messenger app, already available in major app stores, demonstrates how this 
unbundled architecture creates practical value. While the app currently provides a complete, 
vertically integrated product built on Urbit's infrastructure, Zenith will enhance its capabilities by 
explicitly separating these three layers: 
 

-​ At the data layer, group content and user interactions can be canonicalized and made 
discoverable through the Scry Oracle while preserving privacy. 

-​ At the algorithm layer, communities can implement their own discovery mechanisms 
and reputation systems. 

-​ At the interface layer, the plugin marketplace planned for the Tlon app enables 
customizable experiences built on this shared foundation. 

18 



 

The Data Layer: Public, Discoverable Activity 
Today, each social application must build its own user base from scratch, creating isolated 
communities that can't easily interact. With Zenith, Tlon groups will be able to make their public 
activity discoverable across the network, enabling new members to find relevant communities 
and content. Private groups can still maintain control over access while benefiting from 
network-wide discovery when desired. 
 
For example, a group might choose to make their event announcements or resource directories 
publicly discoverable, while keeping discussions private. This allows potential members to find 
communities that match their interests without compromising group privacy. 
 
With a canonical, decentralized reputation substrate, Group admins can gate participation and 
roles, incentivize behavior, and engender new sorts of digital economic interactions (i.e. 
unsecured or reputation based lending) based publicly legible reputation protocols enabled by 
the Scry Oracle.   

The Algorithm Layer: Community-Controlled Discovery 
The current centralized paradigm of content discovery has created a one-size-fits-all approach 
optimized for engagement rather than value. By keeping user data siloed, only the company that 
controls the data can build algorithms to surface content. This creates a fundamental conflict of 
interest: platforms optimize for engagement, not for user value. Zenith makes relevant user data 
public, allowing for competition in the algorithm layer. Communities can develop or choose 
algorithms that align with their values and needs, from content recommendation systems to 
reputation scoring mechanisms. 
 
Competition among algorithms can lead to a more diverse and nuanced ecosystem of discovery 
mechanisms. Rather than a single, opaque algorithm determining what users see, Zenith 
enables a diversity of approaches that can be tailored to the needs of different communities. 
This unbundling of the algorithm layer allows for a more sophisticated understanding of quality 
and relevance, leading to a more valuable user experience. 
 
This data is canonicalized through the Scry Oracle, creating a permanent, verifiable record of 
quality assessments that can't be manipulated or retroactively changed. The community can 
then develop algorithms that surface content based on the author's verified history of valuable 
contributions. Because these reputation signals are canonical, they're more meaningful than 
simple upvotes—you can verify exactly how a member earned their reputation over time. 

The Interface Layer: From Messenger to Social OS 
Tlon's roadmap includes evolving their messenger into a social operating system through 
plugins and extensions. While traditional app stores rely on centralized reputation and 
distribution systems, Zenith will enable a more robust marketplace built on verifiable trust. 
 

19 



 

When developers publish plugins, they will canonicalize both the code and its metadata through 
the Scry Oracle. This creates an immutable record of what was published and by whom, 
enabling users to verify the authenticity and provenance of any plugin. More importantly, as 
users install and interact with plugins, their usage metrics can be canonicalized as well, creating 
a reliable, manipulation-resistant reputation system for developers and their code. 
 
For example, a team collaboration plugin could build trust through verified usage patterns: how 
many groups actively use it, how long they've used it, what features they rely on most. Because 
these usage metrics are canonicalized through the Scry Oracle, they can't be gamed or falsified. 
A developer's reputation becomes a verifiable history of providing value to the community rather 
than just marketing claims or easily-manipulated store ratings. 
 
This verifiable reputation system enables more sophisticated marketplace dynamics. Users 
could filter plugins based on developers' track records across multiple projects. Communities 
could maintain curated plugin collections with transparent selection criteria. Payment systems 
could evolve to reflect actual value delivered, with pricing tied to verified usage patterns rather 
than arbitrary subscription tiers. 
 
The combination of verified code distribution and reliable reputation tracking will enable 
developers to focus on creating valuable tools without having to build complex platform 
infrastructure. For instance: 
 

-​ A research collaboration plugin could prove its widespread adoption among academic 
communities 

-​ A governance plugin could demonstrate its reliable use in high-stakes community 
decisions 

-​ A content moderation plugin could show its effectiveness through verified outcomes 
 
This creates a more efficient marketplace where value flows directly to creators of useful tools, 
with trust built on verifiable evidence rather than centralized authority or subjective app-store 
reviews. 

Reputation Across Systems 
The unbundled architecture of Zenith enables a powerful new capability: reputation that 
develops across multiple roles and types of participation. Unlike traditional systems where 
reputation is siloed within specific platforms or use cases, Zenith will enable participants to build 
verifiable reputations across different types of network activity and applications. 
 
Consider a Urbit Star operator who runs network infrastructure: when they serve data that's 
been canonicalized through the Scry Oracle, their reliability in doing so becomes part of their 
permanent record. If they consistently serve data quickly and reliably, this builds their reputation 
as a dependable infrastructure provider. This same operator might also build blocks on the 
network, where their history of building well-formed blocks further strengthens their reputation. 

20 



 

Their proven track record across these different roles creates a more complete picture of their 
contributions to the network. 
 
Similarly, a developer building plugins for Tlon's marketplace could leverage their reputation 
across multiple axes. Their plugins' usage statistics and user feedback would be canonicalized 
through the Scry Oracle, creating a verifiable history of the popularity of their software. If they 
later decide to operate infrastructure services, prospective users could verify their history of 
reliably maintaining code and responding to user needs. This cross-context reputation makes it 
easier for reliable actors to expand into new roles while helping users make informed decisions 
about whom to trust. 
 
Even at the community level, reputation becomes more meaningful when it spans different types 
of activity. A group moderator who consistently makes fair decisions (verified through 
canonicalized governance actions) might be trusted to help curate content for the broader 
network. Their reputation for good judgment in one context supports their credibility in others, all 
backed by verifiable evidence rather than mere claims. 
 
This multi-dimensional reputation system isn't possible without both the technical infrastructure 
for tracking verifiable actions and the social context for making those actions meaningful. The 
Scry Oracle provides the technical foundation by making these interactions permanent and 
discoverable, while Urbit's identity system ensures that reputation accrues to persistent 
identities that can't be easily abandoned or recreated. 

Future Possibilities 
The combination of unbundled infrastructure and cross-system reputation will enable entirely 
new categories of applications. While Tlon Messenger can capture immediate value from 
Zenith, the architecture supports much more sophisticated systems that weren't possible in 
traditional bundled platforms. 

Light Contracts 
 
Light Contracts represent an area of future development, currently in the research phase and 
planned for implementation after mainnet launch. Light contracts push computation to the 
network edge (individual Urbit nodes) rather than through consensus. Unlike smart contracts 
that execute on every validator node and store their entire state on-chain, Light Contracts 
operate as deterministic functions whose inputs are canonicalized through the Scry Oracle while 
execution happens locally on Urbit nodes. Zenith stores only cryptographic commitments to 
inputs, not the computed state—similar to Urbit’s naive rollup. 
 
Any Urbit node can execute this logic locally by using inputs canonicalized on-chain. For 
example, a Light Contract would canonicalize order submissions through the Scry Oracle, but 
order matching and state calculation happen on individual nodes. Because all nodes execute 

21 



 

the same deterministic function with the same canonicalized inputs, they arrive at the same 
state without requiring on-chain computation. This separation of consensus (what inputs exist) 
from computation (what those inputs produce) enables significant performance improvements. 
 
Light Contracts eliminate certain types of dependencies between contract executions. Since 
each Light Contract operates on inputs that have been canonicalized through the Scry Oracle 
rather than reading from shared mutable state, many contracts can be processed independently. 
A node can execute multiple Light Contracts simultaneously when they don't depend on each 
other's outputs. However, when contracts do have sequential dependencies—where one 
contract's output becomes another's input—they must still be processed in order. This 
architecture enables parallel processing for independent operations while maintaining correct 
ordering for dependent ones. Combined with local execution, this approach scales linearly with 
the number of nodes that join the network because execution is decoupled from transaction 
verification. Because only cryptographic commitments are stored on-chain, the blockchain 
remains lightweight even as contracts and computational complexity scale. 
 
Traditional smart contracts treat the blockchain as both a source of truth and an execution 
environment, forcing every node to compute every operation redundantly. Light Contracts 
recognize that consensus is only needed for inputs, not computation. Where smart contracts 
must optimize for gas costs and on-chain storage, Light Contracts can perform complex 
calculations, store large derived state, and interact with external data without gas constraints. 
This enables applications that aren't economically feasible on conventional platforms— real-time 
pricing engines, sophisticated matching algorithms —while maintaining verifiability and 
determinism. 

Specialized Execution Environments: Stars as L3 Sequencers 
The Scry Oracle's ability to make any computation verifiable enables Stars to operate 
specialized execution environments without requiring changes to Zenith's base layer. For 
example, a Star could run an Ethereum Virtual Machine (EVM) sequencer, publishing state roots 
through the Scry Oracle. This creates a permissionless environment where different Stars can 
offer varied execution environments while inheriting Zenith's security guarantees. 
 
This capability is particularly significant at launch: while Zenith intentionally launches without 
native smart contract support to maintain simplicity and security, EVM compatibility through 
Stars enables key functionality like new token creation from day one. Projects can deploy 
standard ERC-20 or ERC-721 contracts through Star-operated EVMs immediately, rather than 
waiting for future protocol upgrades. 
 
The unbundled nature of this approach becomes clear when we examine its layers: 
 

-​ At the data layer, state roots and transaction data are canonicalized through the Scry 
Oracle 

-​ At the execution layer, different Stars can implement specialized environments optimized 
for specific use cases 

22 



 

-​ At the interface layer, standard endpoints enable existing tools and applications to work 
seamlessly 

 
This architecture allows Stars to develop expertise in particular domains. One Star might focus 
on running high-performance DeFi protocols, another on gaming applications, and another on 
identity services. Their reputation for reliable execution in these domains, verified through the 
Scry Oracle, helps users choose providers that match their needs. 

Cross-Domain Applications 
The shared data namespace created by the Scry Oracle enables applications that span 
traditional boundaries. A professional network could implement its own reputation metrics while 
maintaining compatibility with broader discovery systems. A content platform could develop 
specialized curation algorithms while allowing its content to be discoverable through other 
interfaces. 
 
More sophisticated applications become possible when combining multiple execution 
environments. For example: 
 

-​ A lending application for providing uncollateralized loans to creators could merge 
verifiable metrics of social capital (like sustained subscription counts and engagement 
patterns) with DeFi protocols to create more sophisticated credit scoring, enabling loans 
backed by proven audience relationships rather than traditional collateral 

-​ A DAO could use one Star's governance-focused EVM for voting while using another's 
DeFi-focused environment for treasury management 

-​ A game could combine one Star's matchmaking and ranking system with another's asset 
trading infrastructure 

Economic Relationships 
The combination of verifiable computation and cross-system reputation enables new types of 
economic relationships. Stars can compete to provide specialized services, with their reputation 
helping users make informed choices. Developers can create applications that compose 
services from multiple providers, relying on verified track records rather than centralized trust in 
deciding which developers or providers they choose. 
 
This creates a more efficient marketplace for blockchain services, where: 
 

-​ Users can choose providers based on verified performance in their specific use case 
-​ Stars can differentiate themselves through specialized expertise 
-​ Developers can build on reliable infrastructure without lock-in 
-​ Value flows directly to those providing useful services 

 
Rather than trying to build everything into the base layer, Zenith provides the minimal primitives 
needed to enable this ecosystem of specialized services. The Scry Oracle's role in making 

23 



 

computation verifiable, combined with the reputation system's ability to track reliability across 
different contexts, creates a foundation for continuous innovation at the services layer. 
 

$Z Token Economics 
The introduction of $Z incentivizes the growth of the network, providing a means of value 
accrual to Urbit infrastructure and a new economic primitive to build upon. An exploration of the 
opportunities provided by this new economic primitive can be found further below; this section is 
focused on: 
 

●​ The role of $Z in the Urbit network 
●​ Distribution of $Z at TGE (Token Genesis Event) 
●​ Address space $Z claims via Lockdrop 
●​ $Z emissions and mechanics 
●​ The incentivized testnet 

 

Roles of $Z 
$Z will have three roles defined by the Zenith protocol: 
 

1.​ $Z will be the native fee token of the Zenith chain. Growth of the Urbit network is 
conditional upon participation from Galaxies (who issue Stars) and Stars, who issue 
Planets. Network growth will generate transaction revenue through PKI interactions, 
which will in turn be captured by Galaxies and Stars: incentives aligned. 

2.​ $Z will incentivize the provisioning of Urbit infrastructure nodes6, without which 
Zenith would not function properly or provide sufficient decentralization guarantees. After 
TGE, the only source of $Z supply will be from various forms of network participation 
available only to owners of infrastructure nodes. 

3.​ Staked $Z will be required to validate blocks and propose transactions. Galaxies 
will be required to maintain a stake of at least 131,072 $Z to participate in validating 
blocks. All validators are required to stake the same amount of $Z. As validators 
misbehave their stake is slashed, which reduces their likelihood of being selected to 
produce blocks. If the validator’s stake falls below some threshold, they will be unable to 
produce more blocks and evicted from the validator set. Double signing will result in 
slashing of staked $Z, and inactivity will result in temporary suspension from selection as 
a validator. Stars will be required to stake $Z on their Galaxy to form an economic 
relationship, providing them with access to the Galaxy’s blockspace. 

 

6 It’s essentially DePIN: https://www.theblock.co/learn/299214/what-is-depin  

24 

https://decrypt.co/resources/what-is-a-lockdrop
https://www.theblock.co/learn/299214/what-is-depin


 

Tokenomic Overview 
 

●​ Total Supply: capped at 4,294,967,296, matching the total number of Azimuth points 
●​ Distribution: 60% community (between lockdrop and block rewards), 12.5% to the Zenith 

Foundation, 12.5% team (4 year vest with a 1 year cliff), 10% to seed investors, 5% 
allocated to market makers 

●​ Block Reward Emissions: 32 years with 4 year halvings 
 

Distribution at TGE 
 

Address Space Lockdrop 
 
30% of total supply will be claimable by the owners of Galaxies and Stars via the Lockdrop. 
Mechanically, this means that an owner of a Galaxy or Star will assign the ownership of their 
Galaxy or Star to the Lockdrop contract — the “Custodian” contract — for a period of time of 
their choosing between one and five years. Importantly, the Custodian contract will be 
implemented such that proxy addresses can still be interacted with. This means that a Galaxy or 
Star owner participating in the Lockdrop would still retain the ability to spawn Planets/Stars, vote 
(in the case of Galaxies), validate and propose blocks on and manage all aspects of running the 
actual Zenith/Urbit node. Notably, while the keys associated with the Custodian contract cannot 
be rotated, assignment via a multisig can accomplish this. 
 
Procedurally, the lockdrop will be announced publicly six months prior to the launch of Zenith. 
There will be a six month participation window during which Star and Galaxy owners can 
deposit their address space into a contract over an expressed window between one and five 
years. Depositors will be able to participate through a web UI with transparent metrics around 
lock rates, tokens claimed, and the ongoing time preference of participants. Those that deposit 
for the maximum lock period (five years) receive tokens pro-rata from a bonus pool that is 
sourced from the total amount of tokens that would have been allocated to all lockdrop 
participants had they all locked for five years.  
 
The purpose of the lockdrop is to incentivize address space holders with the highest economic 
Zenith/Urbit time preference to lock for as long as possible. Locking in the contract will be 
irreversible7 as this allows the protocol to grant the totality of lockdrop tokens in a locked format 
immediately after the participation window closes so that participants can take receipt of them 
before value can be ascribed to them in the open market. All claims will be subject to a one year 
cliff from the date the claim is made (not TGE). Galaxy points will be allocated 1% of the TGE 
lockdrop allocation, with the remaining 99% allocated to stars.  
 
Each Star is entitled to receive the following amount of tokens: 
 

7 Without a Galaxy vote, that is. 

25 

https://docs.urbit.org/system/identity/concepts/hd-wallet#proxies


 

 𝐹𝑢𝑙𝑙 𝑇𝑜𝑘𝑒𝑛 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 =  1,275,605,287
𝑆𝑡𝑎𝑟 𝐿𝑜𝑐𝑘𝑑𝑟𝑜𝑝 𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 × 𝑇𝑜𝑡𝑎𝑙 𝑈𝑟𝑏𝑖𝑡 𝑆𝑡𝑎𝑟𝑠

 
Each galaxy is entitled to receive the following amount of tokens: 
 
12,884,902/ ([Galaxy Lockdrop Participation Rate]*[Total Urbit Galaxies]) 
 
Those stars not participating in the five year lock will receive tokens by the following formula 
with a one year cliff and a linear vest thereafter: 
 
[Full Token Allocation] * (1- (5 - [Lock Period in Years])*20%) 
 
A bonus pool will accrue based on the following formula taken as the sum of the Full Token 
Allocation multiplied by a penalty rate (20% for each year of each Star not participating in the 
five year lock period). This bonus pool will be distributed to stars locking for five years, pro rata: 
 
Bonus Pool = [Star Lockdrop Participation Rate] * ([% of Stars Locked for 4 years] * [Full Token 
Allocation] * 20%) + [Star Lockdrop Participation Rate] * ([% of Stars Locked for 3 years] * [Full 
Token Allocation] * 40%) + [Star Lockdrop Participation Rate] * ([% of Stars Locked for 2 years] * 
[Full Token Allocation] * 60%) + [Star Lockdrop Participation Rate] * ([% of Stars Locked for 1 
year] * [Full Token Allocation] * 80%) 
 
The same formula will apply to galaxies. 
 
Five lockup periods are available upon claim. Assuming 100% of stars and galaxies are locked 
(ie no bonus is awarded), which is an implausible scenario, the allocation would be as follows: 
 

Lockup Period 
(years) 

Maximum % 
Captured 

Per Galaxy Per Star 

1 20% 10,066 3,908 

2 40% 20,133 7,816 

3 60% 30,199 11,274 

4 80% 40,265 15,632 

5 100% 50,332 19,541 

 
Any tokens left unclaimed due to either nonparticipation in the Lockdrop or participation in a 
lower than maximum duration Lockup will instead be allocated to those that participate in the 
maximum lockup period. This ensures that most tokens are awarded to those with the lowest 
time preference. 
 

26 



 

For illustrative purposes, using the above example, if 60% of stars were to lock five years and 
40% for one year, the bonus pool accrued to five year stars would sum to 408,193,692 tokens 
for a pro rata bonus of 10,422 tokens per star (a 53% bonus).  
 

Block Rewards and Transaction Fees 
 
Zenith will issue block rewards over 32 years with four year halvings. Post-TGE, block rewards 
are the only mechanism by which new tokens will enter the network.  
 
Block rewards will be received by validating Galaxies. Galaxies will distribute a portion of the 
reward to Stars that participate in proposing transactions. The specifics of the distribution 
between Galaxies and Stars are still under deliberation. 
 
Transaction fees will eventually become the main source of revenue for Galaxies and Stars. We 
believe that 32 years should be ample time to establish Zenith as an independent chain, 
capable of generating enough demand for blockspace. This, in turn, will provide the incentive 
needed to maintain the chain's infrastructure. 

Governance & Management 
Zenith will begin development within a subsidiary inside of Tlon Corporation. Post testnet 
release, Zenith core development and business activity will be spun out into a Cayman 
Foundation. 
 
 
 
 

27 


	Zenith Lightpaper, V0.2 
	Preamble 
	Abstract 

	Introduction 
	What is Urbit and why Zenith? 
	Background 
	Early Development 

	The Current State of Urbit & Challenges 
	The Need for Consensus 
	Lack of Global State 
	Lack of Native Economic Primitives 



	Tying It All Together: Zenith Protocol 
	Network Architecture 
	Consensus Mechanism 
	Enshrined Proposer-Builder Separation (ePBS) 
	Network Dynamics Under Contention 

	Network Participant Roles 
	Stars 
	Planets 

	Special Considerations 
	Galaxy-Owned Stars 
	Azimuth Transactions 

	The Scry Oracle System 
	Understanding Urbit's Scry Namespace 
	Adding Byzantine Fault Tolerance 
	Adding Discoverability to Scry Bindings 

	Developer Experience 
	Example: Providing a Rating by Canonicalizing a Scry Binding 
	Example: Aggregating Ratings by Querying the Scry Oracle 


	Implementation Strategy 
	Initial Scope 
	Incentivized Testnet -> Mainnet Launch 
	Future Work 


	Applications & Use Cases 
	Cross-Domain Applications 
	Economic Relationships 
	Unbundling the Social Stack 
	Tlon Messenger: Unbundling in Practice 
	The Data Layer: Public, Discoverable Activity 
	The Algorithm Layer: Community-Controlled Discovery 
	The Interface Layer: From Messenger to Social OS 

	Reputation Across Systems 
	Future Possibilities 
	Light Contracts 
	Specialized Execution Environments: Stars as L3 Sequencers 
	Cross-Domain Applications 
	Economic Relationships 


	$Z Token Economics 
	Roles of $Z 
	Tokenomic Overview 
	Distribution at TGE 
	Address Space Lockdrop 
	Block Rewards and Transaction Fees 

	Governance & Management 

